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SIMULATION OF NON-NEWTONIAN FLOWS 

ABSTRACT 

The research supported by this grant included two projects: 7. Temperature Control In 
Polymer Extrusion Processes, here an optimization problem was formulated. This problem 
was motivated by the desire to obtain uniform extrudate temperature at the die exit in a 
polymer extrusion process. Control was effected by adjustments to the heat flux along the 
surface of the pipe. An optimality system of partial differential equations was derived from 
which optimal controls and states may be determined. Then, finite element discretizations 
of the optimality system were defined and error estimates were provided along with an 
efficient solution algorithm for the discreet. Finally, computational results were given for a 
model example with Oldroyd type fluid, demonstrating the effectiveness of our theory and 
methods, as well as their potential applicability to industrial problems. II. Analysis and 
Finite Element Approximation of An Optimal Control Problem in Electrochemistry with 
Current Density Controls, here an optimal control problem for impressed ckthodic systems 
in electrochemistry was studied. The control in this problem was the current density on the 
anode. A matching objective functional was considered. The existence of an optimal 
solution was proved. The use of Lagrange multiplier rules was justified and an optimality 
system of equations established. Finally, a finite element algorithm was defined and 
optimal error estimates were derived. 



Temperature Control In Polymer Extrusion Processes 

In polymer extrusion processes, one is often interested in maintaining a quasi-uniform 
temperature, to reduce material (extrusion product) inhomogeneity, throughout the 
extrudate cooling process. In this project, we studied the somewhat simplified case: one 
tries to obtain a uniform temperature distribution at the exit under a steady state situation. 
The means by which we achieved such a uniform temperature distribution at the exit were 
to adjust the heat flux on the surface of the pipe near the exit. 

The extrudate in equation was assumed to be a viscoelastic fluid of the Oldroyd type such 
as polymer melts with a fast relaxation mode. We took as the governing equations for the 
Oldroyd type the Navier-Stokes equations, the incompressibility constraint, the appropriate 
constitutive equation for an Oldroyd model, the energy equation, and simplified boundary 
conditions. The control function was determined in a manner that would allow hot spots to 
be avoided. 

We investigated two means of obtaining a uniform temperature distribution. The first is to 
make the gradient of the temperature along a portion of the boundary small. Another means 
of achieving the desired result is to try to force the temperature field itself to be quasi- 
uniform. Numerical experiments revealed that both techniques work effectively for the 
desired objective. However, we focus our research on the latter. 

We proved the existence and uniqueness of optimal solutions and derived an optimality 
system, that is, a set of equations from which the optimal control and state may be 
determined. Also, finite element methods and numerical examples were presented. We also 
developed an iterative algorithm to compute the approximate solution. The convergence of 
our algorithm was proved and a comparison with a direct method made. 

Analysis and Finite Element Approximation 
of an Optimal Control Problem in 

Electrochemistry with Current Density Controls 

We investigated an optimal control problem for impressed cathodic systems. A typical 
example of an impressed cathodic system is a metal container filled with an electrolyte. The 
painted portion of the container surface is usually treated as insulated. The unpainted apart 
is divided into cathode and anode that are connected to the negative and positive poles of an 
electrical source, respectively. By adjusting the current density on the anode we could 
effectively alter the potential distribution on the entire bounding surface or in the entire flow 
domain. The potential distribution, of course, affects on the chemical reaction process 
occurring inside the flow domain, which in turn affect the rate of corrosion of the metal 
container. Thus, the current density on the anode can be used as a practical control variable 
for generation a desired potential field. This idea can be conveniently formulated as optimal 
control problems for the potential equation with appropriate boundary conditions. Optimal 
control problems of this sort have been studied. Here existence of an optimal solution is 
proved. The use of Lagrange multiplier rules is justified and an optimality system of 
equations is established. Finally, a finite element algorithm is defined and optimal error 
estimates are derived. 
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BRIEF OUTLINE OF RESEARCH FINDINGS 

Abstract.  An optimization problem is formulated motivated by the desire 
to obtain uniform extrudate temperature at the die exit in a polymer 
extrusion process. Control is effected by adjustments to the heat flux 
along the surface of the pipe. An optimality system of partial differential 
equations is derived from which optimal controls and states may be 
determined. Then, finite element discretizations of the optimality system 
are defined and error estimates are provided along with an efficient 
solution algorithm for the discrete equations. Finally, computational 
results are given for a model example with Oldroyd type fluid, demonstrating 
the effectiveness of our theory and method as well as their potential 
applicability to industrial problems. 



BRIEF OUTLINE OF RESEARCH FINDINGS 

In polymer extrusion processes, one is often interested in maintaining a quasi-uniform 
temperature, so as to reduce material (extrusion product) inhomegeneity, throughout the 
extrudate cooling process. In this research, we study how one obtains a uniform 
temperature distribution at the exit under a steady state situation. The means we use to 
achieve such a uniform temperature distribution at the exit, is to adjust the heat flux on the 
surface of the pipe near the exit. 

The extrude in question is assumed to be a viscoelastic fluid of the Oldroyd type, such as 
polymer melts with a fast relaxation mode. Two means of obtaining a uniform temperature 
distribution, resulting in two different functionals, have been investigated. The first 
involves making the gradient of the temperature along the boundary small. Thus, for 
example, given a velocity field, we seek a temperature field and a control field such that 
the functional 

M(T,g)=£ ,g)=|| IgradTfdT + ^j |gfdT 

is minimized subject, of course, to the constraints imposed by the flow equations. Here the 
minimization results in a quasi-uniform temperature distribution along the boundary 
segment, since the surface derivatives of the temperature are forced to be small. Another 
means of achieving the desired result is to try to directly force the temperature field itself to 
be quasi-uniform. Thus, now, given a velocity field, we would seek a temperature field 
and a control field such that the second functional 

N(T,g)=J- >g) = i[|T-Tdfdr+W|gfdr 
Jr0 Jrc 

is minimized subject to the constraints imposed by the flow equations. The non-negative 
parameters y and 8 can be used to change the relative importance of the two terms appearing 
in the definition of N as well as to act as penalty parameters. Our numerical experiments 
demonstrated that a small y is more useful in achieving quasi-uniform boundary 
temperature distributions, although it also reduces the accuracy of the approximate solution. 
Numerical experiments also show that both M and N work effectively for the desired 
objective. However, our work has focused on N. Under the realistic assumption that u • n 
= o on the boundary, we have proved the existence and uniqueness of optimal solutions 
and derived an optimality system, i.e., a set of equations from which the optimal control 
and state may be determined. In addition, finite element methods have been used to 
compute an approximate solution of the optimality system. Optimal error estimates have 
been derived and numerical experiments have been performed. Finally, we have developed 
an iterating algorithm to compute the approximate solution. The convergence of our 
algorithm has been proved and a comparison with the direct method made. 

Control problems for the fully coupled problem as well as temperature matching for the 
entire extrudate will be addressed next. 
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Abstract. An optimization problem is formulated motivated by the desire to obtain uniform extrudate temperature at 
the die exit in a polymer extrusion process. Control is effected by adjustments to the heat flux along the surface of the pipe. 
An upliiiialily system of partial differential equations is derived from which optimal controls and states may be determined. 
Then, finite element discretizations of the optimality system are defined and error estimates are provided along with an efficient 
solution algorithm for the discrete equations. Finally, computational results are given for a model example with Oldroyd type 
fluid, demonstrating the effectiveness of our theory and method as well as their potential applicability to industrial problems. 

1. Introduction 

in polymer extrusion processes, one is often interested in maintaining a quasi-uniform temperature, so 

as to reduce material (extrusion product) inhomogeneity, throughout the extrudate cooling process. In this 

paper, we will study the somewhat simplified case: one tries to obtain a uniform temperature distribution at 

the exit under steady state situation. The means we use to achieve such a uniform temperature distribution 

at the exit is to adjust the heat flux on the surface of the pipe near the exit. 

The extrudate in question will be assumed to be viscoelastic fluid of Oldroyd type such as polymer melts 

with a fast relaxation mode [10]. Let u denote the velocity field, p the pressure field, T the temperature field 

and T the purely elastic part of the extra stress. Let D = ^(gradu+ graduT), W = ^(gradu — gradu7 ) 

and Dar = (ugrad )T+TW — Wr — a(Dr + rD) where — 1 < a < 1. The parameters Re, Wc and u are the 

Reynolds number, Weissenberg number and retardation parameter, respectively. The governing equations 

for the Oldroyd type fluid, in dimensionless form, is given by the Navier-Stokes equations 

Re(n • grad )u + grad p = (1 -u)Au + divr + f,    in £2, (1.1) 

the incompressiblity constraint 

divu = 0   in ft, (1.2) 

f The work of MDG was supported by the Air Force Office of Scientific Research under grant number AFOSR-90-0179 and 

by the Office of Naval Research under grant number N00014-91-J-1493; that of LSI! was supported by the Natural Science and 

IDngineeriug Research Council of Canada under grant number OGP-0089763; that of JCT was supported by US Army Ilescarch 

Office under grant number DAAL03-91-G0237. 

1 



the constitutive equation (Oldroyd model) 

T+WeDaT=2uD   infi, (1.3) 

and, for simplicity, the boundary condition 

u = h   onT, (1.4) 

and also the energy equation 

-K AT + (ugrad )T 

= Q + 2/i(grad u + grad uT) : (grad u + grad uT)    in Q, 

with boundary conditions 

(1.5) 

r = o onrD, (i.6) 

^ = HN   onT^UTo, (1.7) 
on 

?f=g   onTc- (1.8) 
on 

The data functions f, Q, HN, and h are assumed known; the control g is to be determined so that hot spots 

are avoided. The constants K and /i depend on the thermal conductivity coefficient, density, specific heat 

at constant volume, and viscosity coefficient of the fluid. See [11] for details.  We assumed that buoyancy 

effects can be negelected, and thus the temperature variable does not appear in (1.1). 

Two means of obtaining a uniform temperature distribution come to mind.  The first is to make the 

gradient of the temperature along the boundary T0 small. Thus, for example, given a velocity field u, we 

would seek a temperature field T and a control field g such that the functional 

M(T,g) = %[   |grad,r|2dr + ^/   \g? dT (1.9) 

is minimized subject, of course, to the constraints imposed by the flow equations (1.5)-(1.8). Here, grada 

denotes the surface gradient operator, e.g., in R2, the tangential derivative operator d/dr. The non-negative 

parameters a and 6 can be used to change the relative importance of the the two terms appearing in the 

definition of M as well as to act as penalty parameters. The appearance of the control g in the definition of 

J is necessary because we are not imposing any a priori limits on the size of this control. The minimization 

of (1.9) results in a quasi-uniform temperature distribution along the boundary segment ro because the 

surface derivatives of the temperature are forced to be small. Another means of achieving the desired result 

is to try to directly force the temperature field itself to be quasi-uniform. Thus, now, given a velocity field 

u, we would seek a temperature field T and a control field g such that the functional 

J(T,g) = ±f \T-Td\*dr + !% [ M2dr (1.10) 
*1 JTO L   Jrc 

is minimized subject to (1.1)-(1.8), where Td is some desired temperature distribution, e.g., something close 

to the average temperature along Tc for the uncontrolled system. The non-negative parameters j and S can 

be used to change the relative importance of the the two terms appearing in the definition of J as well as to 

act as penalty parameters. As will be demonstrated by numerical examples in §6, a small j is more useful 

in achieving quasi-uniform boundary temperature distributions, although it also reduces the accuracy of the 



approximate solution. We will examine the latter issue in §4. Numerical experiments show that both (1.9) 

and (1.10) work effectively for the desired objective. We will focus our discussion on (1.10) thoroughout this 

paper. 
Under the realistic assumption that u • n = 0 on Tc U TN, we may prove the existence and uniqueness 

of optimal solutions and derive an optimality system, i.e., a set of equations from which the optimal control 

and state may be determined. Also, finite element methods are used to compute an approximate solution 

of the optimality system. Optimal error estimates are derived and numerical examples are presented. We 

have also developed an iterative algorithm to compute the approximate solution. The convergence of our 

algorithm is proved and a comparison with the direct method is made. 

Control problems for the fully coupled problem as well as temperature matching for the entire extrudate 

will be addressed elsewhere. 
We close this section by introducing some of the notation used in subsequent sections. Throughout, C 

will denote a positive constant whose meaning and value changes with context. Also, H'{V), s G It, denotes 

the standard Sobolev space of order s with respect to the set V, where V is either the flow domain Q, or its 

boundary I\ or part of that boundary. Of course, H°(V) - L2(V). Dual spaces will be denoted by (•)*. Of 

particular interest will be the space 

Hj,(a) = {seH1(a)   ■.   s = o onr„}. 

Norms of functions belonging to H'(Q), H'(T) and H'(TC) are denoted by || • ||, , || • ||,,r and || • H,,^, 

respectively. 

The inner product in L2(fi) is denoted by (•,), that in L2(T) by (-,)r, that in L2(T0) by (-,-)r0< and 

that in L2(Tc) by (-,)rc- Since, in general, we will use L2-spaces as pivot spaces, these notation will also 

be employed to denote pairings between Sobolev spaces and their duals. 

We will use the bilinear form 

i{T,S) = /gradTgradSdfi   Vr.Seff1^) 

and the trilinear form 

c(u,T,S) = /(u-gradT)Sdfi    Vu£H'(fl)    and    VT.Seff1^). 
Ja 

These forms are continuous in the sense that there exist constants ca and cc > 0 such that 

|a(r,5)| < CaimUll^lli    VT,5 6^(0) (1.11) 

and 

Ku^.S)! < CelHIiimiiHS'lli    VueH'tfi)    and   VT.Seff1^)- (1.12) 

Moreover, we have the coercivity property 

a{T,T)>Ca\\T\\\   VTeHlW (1.13) 

for some constant Ca > 0. 
For details concerning the notation employed and the inequalities (1.11)-(1.13), one may consult, e.g., 

[1] and [7]. 



2. The Optimization Problem, Existence of Solutions, And Optimality System 

We begin by giving a precise statement of the optimization problem we consider. We will assume the 

domain fi is a polygon in It2. We first recall that (1.1)-(1.4) uncouples from (1.5)-(1.8). We may solve for 

(u,pr) from (1.1)-(1.4) once and for all and then plug them into (1.5)-(1.8). Thus the only state variable is T, 

i.e., the temperature field, and the only boundary control variable is g. The state and control variables are 

constrained to satisfy the system (1.5)-(1.8), which we recast into the following weak form: find T G H^ü) 

such that 

Ka(T,S) + c(u,T,S) = (Q,S) + K(g,S)rc + K(HN,S)rN   VSG#i>(fi), (2-1) 

where we have introduced the simplifying notation 

Q = Q + 2/i(grad u + grad uT) : (grad u + grad uT). 

Note that since we seek T G i/p(fi), 
T = 0   on TD . (2.2) 

Throughout, we will assume that the given velocity field u is smooth and satisfies 

divu = 0    in fi       and        un>0    a.e. on Tc U TN ■ (2.3) 

Under these assumptions, we have the useful relation 

c(u,5,5) = i /(un)52dr>0   VSeH^Q), (2.4) 
2 Jr 

which can be derived by setting T = S in the following integration by parts formula: 

c(u, T, S) = f (u • n)TS dT - c(u, S, T). 

For each possible control function g, there exists a unique corresponding state function T. 

Lemma 2.1- For every g G L2(Tc), there exists a unique T £ H^(Q) such that (2.1) t5 satisfied. Moreover, 

imii + im|o,rc < C(\\g\\0,rc + \\Q\\0 + \\HN\\o,rN) • (2.5)1 

The admissibility set Uad is defined by 

Uad = {(T, g) G #i>(fi) x L2(TC) : J(T, g) < oo, (2.1) is satisfied} . (2.6) 

Then, (T, g) G Uad is called an optimal solution if there exists t > 0 such that 

J(f,g)<J(T,g)   V(T,</)GW0(i satisfying ||r-T||1 + ||<7-^||o,rc<e. (2.7) 

Based on the previous lemma, we can show the existence and uniqueness of optimal solutions. 

Theorem 2.2- There exists a unique optimal solution (T, g) G Kad- ^ 

Using techniques in e.g. [9] we may obtain the optimality condition 

ff = -)*lre (2-8) 



where $ is the solution of the adjoint state equation 

Ka(R,*) + c(u,R,*)--(R,T-Td)rc=0   VReHl
D(Q). (2.9) 

Eliminating g from (2.1) and combining with (2.9), we obtain the optimality system 

Ka{T,S) + e(u,T,S) + j(9,S)rc=(Q,S) + K(HN,S)r„   VSe Hl
D(Si) (2.10) 

and 
Ka(R,*) + c(u,R,$)--(R,T-Td)rc=0   VReHb(Q). (2.11) 

Thus, the optimal state, i.e., the temperature distribution T, can be found by solving the coupled system 

(2.10)-(2.11). which also provides the optimal co-state $. The optimal control g can then be deduced from 

(2.8). 

3. Finite Element Approximation, Error Estimates, and Iterative Methods 

In the usual manner, one may construct finite element subspaces Wh C Hl
D(Q) D C(fi) parametrized 

by a parameter h that tends to zero. (In practice, h is, of course, related to a grid size.) We assume the 

approximation property (see [3]): there exist an integer k and a constant C such that 

inf    ||S-SA||i<C7.m||S||m+1    VS€/^(fi)andO<m<*. (3.1) 

A finite element algorithm for determining approximations of the solution of the optimality system (2.9)- 

(2.10) is then defined as follows: seek Th G Wh and $h 6 Wh such that 

Ka(Th,Sh) + c(u,Th,Sh) + föh,Sh)rc 

= (Q,Sh) + K(HN,Sh)r„   VSh€Wh 

and 

Ka(Rh,4>h) + c(u,Rh,$h)--(Rh,Th-Td)rc = 0   V Rh G Wh . (3.3) 

Although the optimality system is linear, the coupling of u and $ in the two equations make the 

derivation of error estimates nontrivial. It turns out to be convenient to apply the Brezzi-Rappaz-Raviart 

theory (see [2]. [5], and [7]) to obtain error estimates. 

Theorem 3.1- Let(T,$) and(Th,$h) be the solutions of (2.9)-(2.10), and (3.2)-(3.3), respectively. Assume 

that T, $ € Hm+1(Q) ("1 #|>(fi) for some 1 < m < Jfc; also assume that (3.1) holds. Then, 

< Cmax ji i l| Am(||Q||m_i + ||^||rw,m-i/2 + ||Td||rc,m-i/a), 

where C is independent ofh, 6, y, T, and $. 1 

A simple iterative algorithm for solving (2.10)-(2.11) can be defined as follows: 

choose     $(°); 



for n = 1,2,..., solve for T<n) from 

Ka(T<n\S)+c(u,J<n\S) 

= ~(*(B-l),S)rc +(Q,S) + K(HN,S)r„   V 5 € ^(ß); 
(3.4) 

then solve for $(") from 

Ka(R,$W) + c(u,RMn)) = -(R,T(n)-Td)rG    VÄ€^(fi). (3.5) 

Of course, ultimately, this algorithm has to be carried out in a discretized version, such as one using a finite 

element method. 
The convergence of this algorithm can be proved as a result of the observation that it is effectively a 

gradient method for the following minimization problem: find g 6 L2(Tc) such that JC(g) := J(T(g),g) is 

minimized where T(g) € #i>(ß) is defined as the solution of (2.1). 

Theorem 5.2- Let (T<n),$(n)) be ike solution o/(3.4)-(3.5) and (T,$) the solution o/(2.9)-(2.10).  Then, 

T(") — T in HX
D{Q)      and     $(n) — $ in Hl

D{Q)  as n -* oo. I 

4. Computational Examples 

Let fi C E2 be the unit square (0,1) x (0,1). Let T = Tc U To U IV U To be shown as in Figure 1. 

Figure 1. Computational domain 

The finite element spaces Wh are chosen to be piecewise linear elements on a triangular mesh. All the 

numerical results make use of the following parameters and data: 

parameters: K = 1/0.73;    Re = 1;    We = 1;    u = 1/2 ; 

boundarv data: T = 1    on TD , 
dT 
dn 

= 0   on riV U To ; 

heat source: Q = —— I 9T2 cos(3a"i) cos2(xy) — 4JT2 sin2(-nr) cos(2:ry) 

+ (1 - y2)~~Z~ sin(3!ri) cos2(try); 



velocity profile: u = (i-jr,0), 

elastic extra stress profile: 
~\-y  -4y2) ' 

pressure profile: 

In functional (1.10), we choose 

p = 4(i-irV*. 

Td = 3.5. 

For the data given above, the exact solution of the uncontroled problem, i.e., for 

dT 
dn 

= 0   on Tc, 

is given by T = 5 sin2(§irz) cos2(xy) + 1. 
We compare the temperature distribution in the uncontroled case with the optimal temperature distri- 

bution in the controled case for which 
dT 
dn = g   on Tc, 

where g is the control such that (1.10) is minimized. Approximations to the optimal state and co-state 
are computed from (3.2)-(3.3); the approximate optimal control gh is then obtained from (2.8), i.e., gk = 
—(l/£)$A|rc- All of the computational results shown below were obtained with the use of a mesh size 
A = JL. Of course, calculations with varying mesh sizes were performed. Since these merely verified the 

error estimates, we do not report on them here. 
Specifically, Figures 2-4 deal with the following cases: 

1. Exact, uncontroled temperature and; Optimal temperature; 
2. Exac:. uncontroled temperature and; Optimal temperature; 
2. Optimal boundary control. 

Figure 2. Temperature contours: uncontroled and controled. 
Optimal boundary control on Tc- 
(Tc is the top boundary segment.) 

(To is the right boundary segment.) 



Figure 3. Temperature surfaces: uncontrolled and controled. 

(re is the top-right boundary segment.) 

(To is the lower-right boundary segment.) 
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ANALYSIS AND FINITE ELEMENT APPROXIMATION 

OF AN OPTIMAL CONTROL PROBLEM IN 

ELECTROCHEMISTRY WITH CURRENT DENSITY CONTROLS 

L. STEVEN Houf AND JAMES C. TURNER} 

ABSTRACT. An optimal control problem for impressed cathodic systems in electro- 
chemistry is studied. The control in this problem is the current density on the anode. 
A matching objective functional is considered; (many other objective functionals can 
be similarly treated.) The existence of an optimal solution is proved. The use of 
Lagrange multiplier rules is justified and an optimality system of equations is estab- 
lished. Finally, a finite element algorithm is defined and optimal error estimates are 
derived. 

Key words. Optimal control, impressed cathodic system, electrochemistry, nonlinear boundary 

condition, finite element method, error estimate 
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1. INTRODUCTION 

We consider an optimal control problem for impressed cathodic systems. A 
typical example of an impressed cathodic system is a metal container filled with 
an electrolyte. The painted portion of the container surface is usually treated 
as insulated. The unpainted part is divided into cathode and anode which are 
connected to the negative and positive poles of an electrical source, respectively. By 
adjusting the current density on the anode we could effectively alter the potential 
distribution on the entire bounding surface or in the entire flow domain. The 
potential distribution, of course, has a direct effect on the chemical reaction process 
occurring inside the flow domain, which in turn has an effect on the rate of corrosion 
of the metal container. Thus the current density on the anode can be used as a 
practical control variable for generating a desired potential field. This idea can be 
conveniently formulated as optimal control problems for the potential equation with 
appropriate boundary conditions. Optimal control problems of this sort has been 
studied in [20] and [21] where the goal was to match a desired potential distribution 
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on the cathode. The models analyzed in [20] and [21] are essentially linear. [14] 
discussed, mainly from an algorithmic point of view, several control mechanisms 
including adjusting the positions of anodes and/or the current density on the anodes 
in order to best match a desired potential on the structure surface; nonlinear models 
were employed as well as linear ones. [15] analyzed a "location control" problem, 
i.e., the control variable is the location of anodes, wherein nonlinear models with 
boundary conditions of polynomial or mixed polynomial-exponential growth type 
were considered. In this article, we will attempt to mathematically analyze optimal 
control problems with current density controls. The nonlinear model used involves 
an exponentially growing boundary condition. 

We assume the electrolyte occupies a physical domain figR2 with a boundary 
r. The domain is assumed to be finite in this paper, although infinite domain 
problems can be handled if appropriate decay rate at infinity is assumed. If Q C R3, 
we will need to work with a non-Hubert space W1,P(Q) with, e.g., p = 3; similar 
results can still be obtained. 

The electrical potential <f> in Q, is governed by the differential equation 

— div(<7 grad <f>) = 0    in Q,, 

where the conductivity a is a continuous function with a positive lower bound. 
The boundary T is divided into three components: the anode TA, the cathode 

Tc and the insulated part TQ. On the cathode Tc, <j> satisfies the relation 

-£=->«> on rc, 

where / is an empirical function that depends on the electrode materials (see [4]). 
In particular we will assume / is given by the Butler-Volmer function: 

f{<i>) = Cz[e C\<t> _ fi—C2<i> (1.1) 

where C\. C% and C3 are positive constants (see [4]). Throughout this paper, / will 
be assumed to be defined by (1.1). For notational convenience, we will mainly use 
/(</>) rather than the explicit expression given in (1.1). 

liquid surface 

electrolyte 

anode^ 

rectilier 

FIG. 1.       A typical impressed cathodic system: an electrolyte container 

connected with an electrical current source 



On the anode TA, we have the boundary condition 

a— =u    on TA , 
on 

which corresponds to the specification of the current density on the anode. Adjust- 
ing the current density on TA amounts to treating u as a control variable. On the 
insulated part To, 

o— = 0   on r0 . 
on 

We are concerned with the following optimal control problem: seek a state <j> 
and a control u such that the functional 

J{<f>,u) = ±- [ (<f> - <f>0)* dtl + ?± f   u2dT, (1.2) 
^eo JQ * JTA 

is minimized subject to the the constraint equations 

-div(agrad^) = 0    infi (1.3) 

d<f> 
a— =u    on TA , (1.4) 

<r-7T = 0    on To (1.5) 
on 

and 

<x|^ = -/(<£)    on Tc. (1.6) 

In (1.2) OQ is a desired potential distribution in Q, and eo and ^o are positive con- 
stants. 

We will make use of an equivalent variational formulation (1.7) of the nonlinear 
boundary value problem (1.3)-(1.6). We will utilize Sobolev spaces Hm(Q,), HS

(TA), 

H9(Tc)- H3(To) and H3(T). The corresponding norms on these spaces will be 
denoted by, e.g., || • ||m, || • ||«,rA, etc. For details, see [1] and [8]. A weak formulation 
of (1.3)-(1.6) is given as follows: seek a <f> € if1(f2) such that 

f agrad<j>-grad^dü+ I   f(<f>)rPdT=f   uxßdT,    V^eF1^).        (1.7) 
Jn JTc JTA 

Equation (1.7) can be formally shown to be equivalent to the nonlinear bound- 
ary value problem (1.3)-(1.6). We mention that second order elliptic differential 
equations with exponentially growing coefficients were studied in, among others, 
[9], [12]. [13] and [16]. An elliptic equation with mixed Dirichlet-Neumann type 
boundary conditions that have an exponentially growing coefficient in the boundary 
condition was studied [7]. Some of the techniques in these articles are useful for the 
mathematical and numerical analysis of the state equation (1.7). 

We restate the minimization problem as follows: 

seek a state <b £ H1 (ft) and augU such that the 
(IS) 

functional (1.2) is minimized subject to (1.7), 



where 
U is a non-empty, closed, convex subset of L2

(TA)- (1-9) 

Now we state a few useful facts. We set a = \C% min{Ci,C2}. Then by Mean 
Value Theorem we obtain 

/(^ = C3(Ci+C2)eV>2a^2   V<£ (1.10) 

where o is between {C\<j>) and (—Ci$). It is also easy to see that 

f'{<f>)>2a   V<t>. (1.11) 

The norm on if1 (ft) defined by 

1/2 

\\\*\\h = ( I o\gv&&<t>\2dn + 2a f </>2dr\      vfe&isi) 

is equivalent to the usual H1 (Q)-noTm || • ||i, i.e.,there exist constants p > 0 and 
7 > 0 such that 

p\\o\\l>  f a\grad<f>\2dQ + 2a f   <f>2 dT > 7 \\<j>\\\    V^etf1^).        (1.12) 
JQ JTC 

A proof of (1.12) can found in, e.g., [17]. 
The rest of the paper is organized as follows. In §2 we prove the existence and 

uniqueness of solutions to (1.7) so that the constraint equation is well-posed. In 
§3 we show the existence of an optimal pair (</>,u) that minimizes (1.1) subject to 
(1.7). In §4 we justify the use of Lagrange multiplier rules and derive an optimal- 
ity condition. In §5 we discuss the regularity of optimal solutions. Finally in §6 
we define a finite element algorithm for solving the optimality system and derive 
optimal error estimates. 

2. EXISTENCE AND UNIQUENESS OF 

SOLUTIONS TO THE CONSTRAINT EQUATIONS 

We first examine the existence of a solution to the nonlinear Neumann type 
boundary value problems (1.7). 

Lemma 2.1 X be a finite-dimensional Hilbert space whose scalar product is denoted 
by (•,•) and the corresponding norm by \ • \. Let F be a continuous mapping form 
X into X with the following property: there exists an r > 0 such that 

(F(<f>),<f>)>0    V (j> € X with \<j>\ = r . 

Then there exists an <f> € X such that 

F((f>) = 0    and    \<j>\<r. 

Proof. See [Raviart], pp. 279.   I 



Lemma 2.2 Assume <f> € H1^) and s > 0. Then e3^ € ^(T). Moreover, there 
exists a constant K, independent of <f>, such that 

f e^\dT<l + \T\ + e2,i2ml\T\<oo, 

where \Y\ is the measure ofT. 

Proof. Let (f> € if1 (£2) and s > 0 be given. A Sobolev embedding theorem 
implies o G Hll2(T). Using embedding results for Orlicz-Sobolev spaces (see [1], 
[10] and [18]) (recall ft C R2), we have Hll2{T) <-+ LA(T) where the JV-function 
A(t) — et  — 1. Thus there exists a constant K > 0 such that 

U\\LAr) =irdlk:Jek2  dT < 11 < KU\\I < oo. 

Hence for each sufficiently e > 0, the constant k = \\<f>\\LA(T) + e satisfies 

/•Ml t  Ml 
/ [ek^ _ i] dT < 1    so that      / e<^ dT<l + \T\. 

We set M = sk2. By an elementary calculation we can show that 

esx<ek2    V\x\>M. 

We set K = eaM = e3**2 < oo. Then 

[eaMdT=f e3WdT+ f e'w dT 
JT J{x€T:\<f>(x)\>M} J{x€T:\<f>(x)\<M} 

<  f e^dT + K\T\<l + \T\ + e
s2(ll^^(r)+e)2 |r| 

<i + ir| + /(""*lll+<)a|r|<oo. 

Letting e —► 0 yield the desired result.     I 

Lemma 2.3 Assume {<f>n} C L2(Tc) is a sequence such that <f>n —> <f> o.e. on Tc 
and 

f   f(<f>n)<f>ndT<B   Vn (2.1) 
JTc 

where f is defined by (1.1) and B > 0 is a constant independent of n.  Then 

I   f(</>)<f>dT <\immi (   f(<f>n)<f>ndT 
JTc n_to°  JTc 

and 

lim / |/(*n)-/(*)l<*r = o. 



Proof. The proof follows the ideas of [13], pp. 21-22. Since / is continuous and 
(f>n —>• o a.e. on Tc, we deduce that f(<f>n) —* f{4>) a.e. on Tc- Note that f(<j>)<f> > 0 
on Tc so that we may use Fatou's Lemma to obtain 

/   f(<f>)<f>dT < liminf /   f(4>n)<ßn dT<B. 
he n^°° JTC 

Hence f(<f>)4> € X1(fi). By setting K = sup^i^ \f{x)\ we easily conclude from the 
identity 

\f(t)\ = \t\-1f(t)t   V*/0  . (2.2) 

that 
\f(t)\<f(t)t + K   VieR. 

Thus 
\m\<\f^W\+K   onTc, 

i.e., f(o) € L}(Tc)- Utilizing (2.2) again, we deduce that for each 8 > 0 and for 
a.e. x € Tc, we have either 

|«g<<S_1    or    |/(*)| <*/(*„)*„ 

so that 
\fW\<C6+8f(<f>n)cf>n    on Tc, 

where C« =    sup   |/(x)|. For every measurable subset S C Tc we have 
|x|<*-i 

/   \f(<j>n)\dT<C6\S\ + 8 f   f{<j>n)4>ndT. 
JTc Jrc 

Equation (2.1) implies 

J f(4>n)<f>ndT<2B 

for n greater than some No > 0. Thus 

J \f(<t>n)\dT<C6\S\ + 2B6   Vn>iV0, 

where \S\ is the measure of 5. Hence, the sequence of functions {/(</>n)} has equi- 
absolutely continuous integrals. By Vitali's Convergence Theorem, 

lim   /   \f(4>n)-f(<f>)\dT = 0, 
n->0° JTc 

Theorem 2.4 Assume u € L
2
(TA)-   Then there exists a unique <j> 6 Hl(Sl) that 

satisfies (1.7). Furthermore, (f> satisfies the estimate 

i<^{IMkrA + l}, (2.3) 



where ß and 7 are constants independent of <f>. 

Proof. We first establish an inequality 

/ agra.d<f>-gT3id<f><m+ I   f{<j>)<f>dT - f   u<f>dT> 

>0   V(^G^1(Q)with II^Ü! =r 

for some r > 0. Using (1.10) we have that 

/   f{<j>)<j>dT>a I   <j>2dT   \/<j>€H1{ü). 
JTc JTc 

Hence it follows from (1.12) that 

/cr grad<£-grad<Mft+ /   f(<t>)4><K >l\\<t>\\\    V^Gtf1^). 
JQ JTC 

Using Cauchy-Schwartz inequality and trace theorems we obtain the estimate 

\h \JTA 

<f>dr </?IMIiNkr.    VteH^Q), 

where 3 is a positive constant. By combining the last two estimates we deduce that 
for r = 4 {|Mlo,i\t + 1} > 0 we have 

I agrad<f>-gTad(j>dn+ I    f(<f>)<f> dT - [   u<f>dT > 
Ju JTc JTA (2.4) 

>0   V^etf1^) with ll^llx =r. 

Since H1(Q.) is separable, we may choose a countable basis of Ürl(f2): {ipi}^. We 
set Xn = span{V>i,- • • ,^71}- The inner product and norm on each Xn is defined 
by that of fT1(f2) restricted to X„. We introduce the mapping Fn : Xn —► Xn as 
follows. For each <f> <E H1^), Fn(<f>) <E Xn is defined by 

(Fn(<f>). VJ) = / o-grad^ • grad^j dQ + f   f(<ß)^j dT - f   wpjdT    l<j<n. 
Jn JTc JTA 

It follows from (2.4) and Lemma 2.1 that the finite dimensional problem 

/ grad^ •gradV><to+ /    f(d>n)i/> dT = [   mßdT,    V V> € Xn (2.5) 
JCl JTc JTA 

has a solution <j>n G Xn with a bound 

||<Mi<^{N|o,rA + l}. (2.6) 



We can extract a subsequence of {<f>n}, still denoted by {<^n}, that converges weakly 
to some 6 € if1 (ft) as n -» 0. Then {<j)n} also converges weakly in 5"1/2(r) by 
a trace theorem. Thus {<f>n} converges strongly in L2(T) by compact imbedding. 
This in turn implies a subsequence satisfies (j>n —* <f> a.e. on I\ By setting tfp = <f>n 

in (2.5) we obtain 

/   f(<j>n)ct>ndT<\\u\\0,rA\\<t>n\\o,rA 
JTc 

< C\\U\\Q,TA Unh < C ||u||0,rA - {\H\o,rA + 1} • 
7 

By Lemma 2.3 we have that 

/   /(^<fT <liminf /   f{<j>n)<t>ndT 

and 

lim / |/(*„)-/(*)|<*r = o. 

By passing to the limit in (2.5) for each xj) € C°°(ft) we see that 

f agva.d<f>-grad^dn+  f   f((f>)ij> dT = /   uV>dI\    V ^ € C°°(ft).       (2.7) 
Jn JTc JTA 

We next prove that this ^ is a solution to (1.7). For each ^ € if1 (ft), we may 
choose a sequence {V'Jfc} C C°°(ft) such that \\ip — V^fclli —► 0 as fc —»• oo. Using (2.7) 
we have 

/ <xgrad<£-gradV>*dft+ /    f{<f>)^kdT=[   u^kdT,    Vfc. (2.8) 
in ./re ^rA 

Lemma 2.2 implies ec^ € L2(TC) and e_c^ € £2(rc) so that JTc \f(<f>)\2 dT < oo. 
Hence. 

I / /(*)(* - V>*) <d < WfWh,Tc IIV> - Mo,TC < c\\f(<f>)\\o,rc U - Mi 
\JTC I 

so that 

/    f(<t>)("<l>- il>k)dT-4 0    asfc-»oo. 
JTc 

Thus we may pass to the limit in (2.7) to show (1.7) holds.   The estimate (2.3) 
follows easily from (2.6). 

To answer the question of uniqueness, we assume <f> and 4> are two solutions to 
(1.7). Then we have 

/agrad(^-^)-gradVdft+ /   [/(<£) - f($)]i/> dT = 0,    WtßeH\ü). 
JQ. JTc 



Setting v = <j> — 4>, we see that 

/ a\ grad(<^ - <Ä)|2 du + f   [f(<f>) - /(£)](* - 4>) dT = 0. 

Using Mean Value Theorem, 

/ a\ grad(<£ - 4>)\2 dQ + f   f'(4>)(<f> - 4>)2 dT = 0 
Jn JTc 

for some <j> between (f> and 4>. Using (1.11), we see that 

[ a\gr<id(<f>-t)\2dQ + a f   (<f> - $)2 dT < 0. 

Hence we deduce that grad(<^ — <j>) = 0 in 0, and (<f> — 4>) = 0 on Tc- This in turn 
implies (6 — <ß) — 0 in fi, i.e., uniqueness holds.   I 

3. EXISTENCE OF AN OPTIMAL SOLUTION 

Having shown that the constraint equation (1.7) is well-posed, we are now pre- 
pared to study the existence of an optimal solution (<f>, ü) that minimizes the func- 
tional (1.2) subject to (1.7). We introduce the admissible set 

Uai = {(<j>,u) G H^Q) x U : (<f>,u) satisfies (1.7)}, 

where U is given by (1.9). 

Theorem 3.1 There exists a (<^,u) € JB'1(fi) x U that minimizes (1.2) subject to 
(1.7). 

Proof. Theorem 2.4 implies an element (<f>, u) € Uad exists such that »7(^, u) < oo. 
Let {(<f>n,un)} C Uad be a minimizing sequence, i.e., 

lim J((f>n,un)=      inf     J(<f>,u) (3.1) 

and 

/ crgrad<£n-gradV><ft2+ /    f{<t>n)*l>dT = f   un^dT,    V^etf1^).    (3.2) 
./n Jrc JTA 

Using (1.2) and (3.1) we deduce {u„} is bounded in L2
(TA)- Then (2.3) implies 

{||^n||i} is bounded. Hence we may extract a subsequence {(<f>n,Un)} such that 

<f>n —>■ (f>   in H (fi)        and       un —>■ ü    in L (r^). 

Furthermore, trace theorems implies <f>n —+ <f>'m L2(Tc); this in turn implies <j>n —> <j) 
a.e. on Tc (after extracting subsequences if necessary). By setting xj> = <f>n in (3.2) 
we obtain 

/ a|grad^|2^+ /   f(<f>n)<j>n < ||«»||o,rA H^lkr* < ß\\un\\Q,TA \\Kh • 
Jil JTc 



Hence we deduce 
/      f(<f>n)<f>n < M 

JTc 

where M is a constant independent of n. By Lemma 2.3, 

/   /(^dT<liminf /   f{<f>n)<t>ndr 
he n-*°° JTc 

and 

lim / |/(^n)-/(<£)| <fr = o,. 

By passing to the limit in (3.2) for if> € C°°(£2) we obtain 

/<rgrad<£-grad^<ffi+ /   f(4>)iJ>oT=[   ürJ>dT,    VVeC°°(Ä). 

Then using the denseness of C°°(ft) in A"1 (ft) and the fact that /(<£) G £2(rc), we 
obtain 

/ <rgrad^-grad^dß+ /    f(4>)ipdT=[   urpdT,    V^Gif1^). 
in irc irA 

Thus (0. ü) G Wad. Finally using the weak lower semi-continuity of ,/(•, •)> we 
conclude that (<^,ü) is indeed an optimal solution, i.e., 

J($,u)=      inf     J(^,ti).    I 
(<£,u)€W0<i 

4. LAGRANGE MULTIPLIER RULES 

In this section we will attempt to characterize optimal solutions whose existence 
has been established in §3. Since the constraint equation has a unique solution for 
each given control if, the state <f> is a well-defined function of u. Since U given in 
(1.9) is not necessarily an open set, the mapping u H-> <f> is in general not differen- 
tiable. Although other approaches available, it turns out to be convenient to use 
the Lagrange multiplier rule to turn the constrained minimization problem (1.8) 
into an unconstrained one and derive an optimality condition. 

We first quote the following abstract theorem concerning the existence of Lagrange 
multipliers for minimization problems on Banach spaces (see, e.g., [19]): 

Lemma 4.1. Let B\ and B2 be two Banach spaces, and U an arbitrary set. Suppose 
J is a functional on B\ x U', fC a mapping from B\ x U to B2. Assume (<£, ü) € 
B\ x U is a local minimum for the constrained minimization problem: 

mva.J(<f>,u)     subject to     AC(<£,u) = 0, (4-1) 

i.e., there exists an open neighborhood 0 of (j> in B\ such that 

Ji.ii«) < J{4>,«)    V(<f>,u) € 0 x U satisfying JC(<f>,u) = 0. 

10 



Assume further the following conditions are satisfied: 
(A) for each u € U, <f> •—► J~(<ß,u) and <f> i—► K(<f>, u) are Frechet-differentiate in 

0: 
(B) for every <f> € 0, «1,^2 G U and a € [0,1], there exists a ua = ua(<f>,Ui,U2) € 

U such that 
JC(<f>, ua) = aK{<j>, u\) + (1 - a)K(<f>, u2) 

and 
J(4>, u«) < aj(<f>, ui) + (1 - a)J(d>, u2); 

(C) the algebraic sum of /C^(<£, u)B\ + £(<£, U) contains a neighborhood of 0. 
Then there exists a A € i?2 3UCh that 

(^(#,ä),0>-(A,x;^,ä)^> = o vveBi 

and 
min£(<^, it, A) = C(<j>, it, A), 

where £(<f),u,\) = J((f>,u) — (A,£(<^, u)) w i/ie Lagrangian of the constrained min- 
imization problem (4.1). 

Proof: See [19].     I 

We will fit our optimization problem (1.8) into the above abstract framework. 
We define the Banach spaces B\ = Hl{Sl) and Bi = if1(ft)*. Let U be given by 
(1.9). The (generalized) nonlinear constraint K, : B\ x U —► Bi is defined as follows: 
K{<l>, u) = 1 for (^, ü) € B\ x U and T € B2 if and only if 

<'»^>rx = / <rgrad^-grad^dfi+ /    f(</>)^dT 
JQ JTC (42) 

We easily see that (1.8) is equivalent to 

"/, 

find (<j>,u) E B\ xU such that 

J(<f>, u) = inf {J($, Ü) : (<£,«) € £1 x tf, £(& ö) = 0} . 

Let the Frechet derivative of J and K with respect to <f> be denoted by ZJ^jT and 
D^/C, respectively. Let the Frechet derivative of J and K. with respect to u be 
denoted by DUJ and DUK,, respectively. D,j,)C(<f>,u) e C(B\,Bi) is defined as 
follows. Dj,fC(<j>, ü) • <f> = ffor ^ € Si and f e £2 if and only if 

{T-v)rA = /<7grad^-grad^dß + /   f'{<j>)^dT   V^efT^ß).        (4.3) 

In order to apply Lemma 4.1, we need to verify conditions (A)-(C). We begin with 
the verification of (C). 

11 



Lemma 4.2. Assume (<ß,ü) € Uad is an optimal solution to (1.7). Then the 
operator D^/C(<^, u) is onto from B\ to B2. 

Proof: Using (1.11)-(1.12) we easily obtain the coercivity for the bilinear form 

(Ö.^)HH. /<7grad^-gradV><ft2+ /   f{4)W>&   V 4>, $ €HX(Ü). 

Then Lax-Milgram Lemma implies that for any 7 € If1(ft)* there exists a imique 
^eH^Cl) that solves (4.3).      I 

Now we are prepared to derive an optimality condition. 

Theorem 4.3. Assume (<£,u) € Uad w <w- optimal solution to the minimization 
problem (1.8).  Then there exists a X £ if1 (ft) such that 

/<7gradV>-gradA<ffl+ /   f'{4>)^\dT = — f (j> - <j>Q)xl> d&    Vij> €&(&). 
JQ JTc e° «/« 

(4.4) 
ana 

f  (S0ü + \)(u-ü)dT>0   VueU. (4.5) 

Proof: Condition (A) in Lemma 4.1 is obviously satisfied for the present setting. 
The convexity in u for the constraint is readily verified since the control variable u 
enters the constraint equation in a linear manner and the control set U is convex. 
The convexity in u for the functional is also easily seen from the convexity of the 
mapping u 1—»■ ||u||o r • Thus Condition (B) is verified. The validity of Condition 
(C) is established in Lemma 4.2. Hence, by Lemma 4.1, there exists a A € £* = 
if1 (ft) that satisfies 

{D+J{]>,ü),xl>) -{^D+K^ü)-^) =0   VVGtf1^) (4.6) 

and 
min C(4>, u, A) = £(<£, ti, A), (4.7) 

where 

C(<t>,u.\) = J{<t>,u)-   I <7grad<£-gradAdft + /   f{<f>)\dT - f uXdT 
L/n JTc JTA 

(4.8) 

Using (1.2) and (4.3), which are the defining equations for J"((f>,u) and D<j,)C(4>, ü), 
respectively, (4.6) can be rewritten as 

— I (9 - <f>0)i>du - /<7gradV>-gradAdft- /    /'(<£)V>A<fT = 0   V^/> €#*(«) 
eo JQ JQ JTC 
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which is clearly equivalent to (4.4). Equations (4.7)-(4.8) implies that, for all u (E U, 

■*eo Jn * jTc 

- I <7grad^-gradAe«7 + /    f(i)\dT- f   uXdT 
Un JTc JTA 

£o Jn 2 JTc 

- \[ <rgrad<£-gradAdft + /    f(<j>)XdT - f   uXdT   , 
Uil JTc JTA \ 

i.e., 

2 
f  (u-ü)(u + Ü)dT+ I   (u-u)XdT>0   VueU. (4.9) 

«/rc JTA 

Given any w € U and e € (0,1), we set u = (1 — e)u + ew in (4.9) (note u €U due 
to the convexity of U) and obtain 

-£ /    e(w-ü)(ew-eü + 2ü)dr+ I   e(w-u)XdT>0    VweU. 
2  JTC JTA 

Thus (4.5) follows by dividing the last inequality by e and then letting e —* 0+.     I 

5. AN OPTIMALITY SYSTEM AND THE REGULARITY OF ITS SOLUTIONS 

In the sequel we will treat the special case U = L
2
(TA)-  From (4.5) we easily 

obtain 
u = -±-X. (5.1) 

From (4.4), (5.1) and the original constraint equation (1.7), we form the following 
system of equations (dispensing with the hat notations to denote optimal solutions): 

/ <7grad<£-grad^<fft+ /   f(<ß)ißdT = ~ f   A^dT,    V^C-ff1^)    (5.2) 
Ja JTc °o JTA 

and 
/ crgradA -graduxfft + /    f'(<j>)Xudr 

Jn JTc 

= —[(<!>-<t>o)wdSl,    VugJf1^). eo Jci 
This system of equations will be called the optimality system. 

Integrations by parts may be used to show that the system (5.2)-(5.3) constitutes 
a weak formulation of the problem 

- div(<7 grad <f>) = 0   in ft, (5.4) 

d<t> 1 d(f> dd> 
cr-TT- = - j-A    on TA ,    o— = 0   on TQ    and   a— = -f(<f>)    on Tc ,   (5.5) 
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- div(<7 grad A) = —(<j> — <f>0)    in ft, (5.6) 

a— =0    on TA U r0        and        a— = -f'{<f>)\    on Tc , (5.7) 

Now we examine the regularity of solutions of the optimality system (5.2)-(5.3), 
or equivalently, (5.4)-(5.7). 

Theorem 5.1 Suppose that ft C R2 is convex or of class C1'1. Assume (<j),\) G 
if1 (ft) x if1 (ft) is a solution to the optimality system (5.2)-(5.3), or equivalently, 
(5.4)-(5.7), then we have that {<j>, A) G Wzl^r\ü) x W3/?<r(ü) for r G [l,oo). 

Proof: Since <f>, \ e ^(ft), Lemma 2.3 implies f(<ß) G Lr(Tc) and f'((f>) G Lr(Tc) 
for all r G [l,oo). We infer from trace theorems that A G Lq(Tc) for all q > 1. 
Hence we have <r§£ G Lg(T) and <r§£ G £?(r) for each q > 1. By applying 
elliptic regularity results to equations (5.4)-(5.7), we obtain <f> G Wzl2'q(ti) and 
A G W3/2'?(ft) for each g > 1. 

Remark In general the possible discontinuity of the normal derivative on the inter- 
section of Tc, To and TA prohibits us from obtaining further regularity. However, 
if <j> and A vanish on the entire intersection of Tc, TQ and TA, then we could in 
fact show that <f> G C2(ft) f~l C(ft) and A G C2(ft) fl C(ft), i.e., <f> and A are in fact 
classical solutions of the optimality system. Also, H2(£l)-regularity for <f> and A is 
expected. 

6. FINITE ELEMENT APPROXIMATIONS 

6.1 Finite Element Discretizations. A finite element discretization of the opti- 
mality system (5.2)-(5.3) is defined in the usual manner. For simplicity we assume 
the domain ft is a convex polygon. We first choose families of finite dimensional sub- 
spaces V C H1 (ft) satisfying the approximation property: there exists a constant 
C and an integer k such that 

\\v - v% < Chm\\v\\m+1,    V v G #m+1(ft), 1 < m < k. (6.1) 

One may consult, e.g., [3] or [6] for a catalogue of finite element spaces satisfying 
(6.1). Then, we may formulate the approximate problem for the optimality system 
(5.2)-(5.3): seek <j>h G Vh and \h G Vh such that 

and 

/ a grad <j>h ■ grad xl>h du + /    f(<f>h )^h dT 
Jn Jrc 

= —T /   AfcVferfT,    VVÄ € V* 
do JrA 

I crgr&dXh -grsiduhdQ+ I    f\(f>h)\huh dT 
Jn JTC 

= — ({<t>h-4>Q)u
hdSl,    \/uh£Vh 

(6.2) 

(6.3) 
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6.2. Quotation of Brezzi-Rappaz-Raviart Approximation Theory. 

The error estimate to be derived in Section 6.3 makes use of results developed by 
Brezzi, Rappaz and Raviart (see [5], also [7] and [8]) concerning the approximation 
of a class of nonlinear problems. Here, for the sake of completeness, we will state 
the relevant results, specialized to our needs. 

The nonlinear problems considered in [5] (also [7] and [8]) are of the type 

F(if>) = */>+ TG(tP) = 0 (6.4) 

where Ä" and Y are Banach spaces and T 6 C(Y; X), G is a C2 mapping from X 
into Y. A solution tp to the equation F(tj)) = 0 is called a nonsingular solution if 
we have that F'(tp) is an isomorphism from X into X. (Here, F'(-) denotes the 
Frechet derivative of F(-).) 

Approximations are defined by introducing a family of finite dimensional sub- 
spaces Xh C X and for each h > 0 an approximating operator Th € C(Y;Xk). 
Then, we seek xj)h € Xh such that 

Fk(^h) = rph+ThG(^h) = 0. (6.5) 

We will assume that there exists another Banach space Z, contained in F, with 
continuous imbedding, such that 

G'(</>) G £(X;Z)   VV€X. (6.6) 

Concerning the operator Th, we assume the approximation properties 

lim||(rfe-T)y||x=0   VyGF (6.7) 
h—►() 

and 
lim||(rA-T)|U(Z;X)=0. (6.8) 
n—>0 

Note that (6.6) and (6.8) imply that the operator G'(t/>) € C(X;X) is compact. 
Morevover, (6.8) follows from (6.7) whenever the imbedding Z C Y is compact. 

We can now state the first result that will be used in the sequel. In the statement 
of the theorem, G" represents the second order Frechet derivative of G. 

Theorem 6.1 Let X and Y be Banach spaces. Assume that G is a second order 
Frechet differentiable mapping from X into Y and that G" is bounded on all bounded 
sets of X. Assume that (6.6)-(6.8) hold and that xf> is a nonsingular solution of 
(6.4). Then, there exists a 8 > 0 and an ho > 0 such that for h < ho, there exists a 
unique vh € Xh satisfying xßh is a nonsingular solution of (6.5) and ||V,fc—V'llx 5: £• 
Moreover, there exists a constant C > 0, independent of h, such that 

Uh - nx < C\\(Th - T)G(0)||x    ■ (6.9) 

For the second result, we need to introduce two other Banach spaces H and W, 
such that W C X C H, with continuous imbeddings, and assume that 

for all w € W, the operator G'(w) may be extended as a linear 

operator of C(H;Y), the mapping w —> G'(w) being continuous (6.10) 

from W onto C(H;Y). 
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We also suppose that 
iim||rA-r|U(y;H) = o. (6.11) 
ft—*o 

Then we may state the following additional result. 

Theorem 6.2 Assume that the hypotheses of Theorem 6.1 hold and that (6.10) and 
(6.11) hold. Assume further that 

F'{ij}) is an isomorphism of H . (6.12) 

Then, for h < h\ sufficiently small, there exists a constant C, independent of h, 
such that 

\\i>h-nH<c\\{Th-T)Gm\H + uh-n2x- ■       (6.13) 
6.3 Error Estimates for the Approximations of Solutions of the Optimal- 
ly System. 

In order to derive error estimates, we begin by recasting the optimality system 
(5.2)-(5.3) and its discretization (6.2)-(6.3) into a form that fits into the framework 
of Brezzi-Rappaz-Raviart theory summarized in §6.2. 

We define 
X = fT1(fi)xiT1(^), 

Y = H-1'2^) x H\ü)* x H-^2(T), 

Z = L2(T) x L2(Q) x X2(r) 

and 
Xh = Vh xV\ 

where if1 (ft)* denotes the dual space of if1 (ft). Note that using Sobolev imbedding 
theorems, Z CY with a compact imbedding. 

Let the operator T G C(Y;X) be defined in the following manner: T((,r),0) = 
((f>, A) for (C, T], 8) € Y and (<f>, A) € A" if and only if 

/ o-grad^-gradV'rfft + a /    <j>ipdT = ((,ip)r,    V^eff^fl) (6.14) 

and 

/ (TgradA-gradwdft + a /    Aw dT = (rj,u) + (6,u)T ,    Vwg^ß).   (6.15) 
Jn JTC 

Clearly. (6.14)-(6.15) consists of two uncoupled elliptic equations with mixed Robin- 
Neumann type boundary conditions and T is its solution operator. 

Analogously, the operator Th € C(Y;Xh) is defined as follows:  Th((,r),6) = 
(<f>h, Xh) for (C, T),6)eY and (<f>h, \h) € Xh if and only if 

f agrad<j>h-gra.diPhdü + a [   <j>htph dT = (C,V>Ä)r ,    V</>ÄeVfc        (6. 16) 
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and 

/ agradAfc-gradü;A dü+a f   \huh dY = (r),u}h)+(8,uh)T ,     Vw*€FA. (6.17) 

Clearly, (6.16)—(6.17) consists of two discrete Poisson-type equations that are dis- 
cretizations of the equations (6.14)-(6.15); also, Th is the solution operator for 
these two discrete equations. 

By the well-known results concerning the approximation of elliptic equations 
(see, e.g.. [3] or [6]), we obtain: 

||(T-TÄ)(C, »7,0)||x-O    as/»-0, (6.18) 

for all (C->7,0) € Y and, in addition, if T((,r),6) € #m+1(ft) x Hm+1(ü), then 

\\(T - Th)((, r,, $)\\x< Chm\\T(C, r/, tf)||H»+i(n)xH«+i(n) • (6-19) 

Also, because Z CY with a compact imbedding, we have that 

\\(T-Th)\\c(Z.,x)^0   as/i-+0. (6.20) 

Next, we define the nonlinear mapping G : X —+ Y as follows: G(^, A) = (£, 77, 0) 
for ((f), X)EX and (£, 77,0) € F if and only if 

(C->r = ^/   \*dT+ [  (f(<j>)-a<f>)irdT   VTT <E #1/2(r), (6.21) 
*o yrA -/re 

(rj,u) = -— [(</>-fa) udSl   VueH^Cl) (6.22) 

(ö,r)r= /   (/'(<£)-a)Ar<fT   VrefT1/2(r). (6.23) 

(6.21)-(6.23) is equivalent to 

{ä^A on 1^; 

f{4>)-a<j>   onTc; (6.24) 

0 on r0, 

rj = -—(4> - <f>Q)    in ti (6.25) 

and 

and 
,rcr<*)-«*   onrc; 

I 0 onroUTi. v       ' 

Recall f(o) = C3(ec^ -ec>*) so that /'(<£) = G3(Giec^+C2e
c^). Using Lemma 

2.2 and trace theorems we infer that if (<f>, A) G ff1(0) x iT1(fl), then for all q > 1, 
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4>\T e L*(T), A|r € L«(T), f(<t>) € L«(T) and f'(<j>) e L«(T). Hence we see that the 
triplet (C,»7,0) defined by (6.24)-(6.26) is indeed in F, i.e., G is well-defined. 

It is easily seen that the optimality system (5.2)-(5.3) is equivalent to 

(<f>,X) + TG((j>,X) = 0 (6.27) 

and that the discrete optimality system (6.2)-(6.3) is equivalent to 

(<f>h,\h) + ThG(<f>h,\h)=0. (6.28) 

We have thus recast our continuous and discrete optimality problems into a form 
that enables us to apply the theories of §6.2. It remainsto verify the hypotheses in 
Theorem 6.1. This will be the task of the next two propositions. 

Proposition 6.3 The operator G : X —► Y defined by (6.21)-(6.23) is second order 
Frechet differentiable. Furthermore, (6.6) holds and G" is bounded on all bounded 
sets of X. 

Proof. In showing the differentiability of G, the linear terms appearing in the 
definition of G does not pose any difficulty. Furthermore the nonlinear terms in 
(6.21) and (6.23) can be dealt with in a similar way. For clarity, we will only 
analyse the differentiability of the nonlinear term r w Jr /'(<£)Ar dT. We define 

a mapping Q : X -► H-^2(T) by {Q(<J>,\),T) = fTc fi^XrdT for all (<f>,\) € X 

and r € iT1/2(r). For each given (<f>, A) € X we have that 

(Q(^ + <ty,A + *A)-W,A),r) 

-/ f"{<f>){8<t>)\rdr-I f(4>){6\)rdr 
JTc JTc 

= I  [f'{4> + 64>) - f(4>) - /"WW1 Ar dT 
JTc 

+ t  [f(4> + 6<f>)-f(<J>)}(6\)ToT 
JTc 

= /   [\f"((i-t)<i> + t(<t> + 6<j>))-f"(cf>)}dt(6<f>)\Tdr+ (6"29) 

JTc JO 

+ I    i f" ((1 - W + K<t> + W)) dt (6<I>)(8\)T dT 
JTc JO 

= /   / / t /'"(a(l - t)(j> + st(4> + 6<f>) + (1 - s)<f>) ds dt \6<j>\2 XT dT 
JTCJO JO 

+ [   f f"((l-t)<f> + t((f> + S(i>))dt(6(ß)(S\)Tdr   V(6<f>,6\)eX. 
JTcJO 

Note that f(<f>) = C3(ec^ - e~c^), /'(<£) = C3(C1e
c^ + C2e~c*% f"(<j>) = 

C3(C
2ec^ - Cle~c**) and /'"(<£) = C3(Cfec^ + C\t-C^\ By Lemma 2.2 we 

have that for all real number m > 1, 

ll/'(^)IUm(rc)<c{i + |r| + em2cwMr|}^, 
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and 

ll/"WII^(rc)<^{i + ir| + emCWl|r|}m 

nrwiiL-(rc) < c {i + iri+e m'CM' in}" , 

where C is a generic constant independent of <f>. Trace theorems for Q C R2 implies 
that for all p > 1, q > 1 and r > 1, 

\M\LHTC) < c\M\i  vs<t>eHl(ü), 

\M\mvc) < c\\6\\\!  vs\eHl(Q) 
and 

IMIi'(rc) < ciMlw   Vreif1/2^). 

We fix some m > 1, p > 1, g > 1 and r > 1 with i + J + J + J = l- Then for 
every (So, 6X) € X we have that 

/    / f"((l-t)<f> + t(<f> + 6<f>))dt(6<t>)(8\)Tdr< 
JTc JO 

<  sup ||/"((1 - t)<f> +1{+ + 6<f>)) ||L«(re) H^llLF(rc) ll*A||L,(rc) lkll^(rc) 
0<t<l 

,2o/-MI.AI|2 

< C {l + |n + em 2CWW |n} " INIh «ail! ||r||1/2jr    V r € H^(T). 

Similarly, we have that for every 8<j> € Hl(£l) and every r G Hll2(T), 

fit tf'"{s{l-t)cf> + st(cl> + 6<l>) + (l-s)<l>)dsdt\6<t>\2\Tdr< 
JTc Jo   Jo 

< C {l + m + em23C|1^ m}^ ll^ll2 IIAIU ||r||1/2,r. 

Returning to (6.29) we obtain that for all r € H 1/2(r) and (6</>, <5A) € X, 

(Q(«) + ty,A + a)-W,A),r)- /   f"(<j>)(6<f>)\TdT-  I   f'(<f>)(SX)rdr < 

< C {l + m + e"'»c«*« |n} " {ll^m ll^lh + H^ll2 PIK} ||r||1/2,r , 

so that we conclude Q as a mapping from X to H  J/2(r) is Frechet differentiable 
and its derivative Q'(<j>, A) is given by 

(W,*U)=/   [/"(^Ar + /'(^)a;r]rfr    VrGiJ1/2^). 

Hence, taking into account the remarks in the beginning of the proof, we have 
justified that G is Frechet differentiable and its Frechet derivative G'((f>, A) is defined 
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as follows.    For each (<f>, A)  € X, G'(<f>,\)(xj>,ü>) = ((,fj,6) for (i£,Ü,) € X and 

(C, fj, Q) € F if and only if 

(C.-)r = l/   üxdT+ [  (f'WJ-afodT   V7rGif1/2(r), 

(77,0;) = -- / ^wdfi   Vu € #*(«) 

(6.30) 

(6.31) 

and 

{9,r)T=  f   f"(</>)^XrdT + f  (f'(<t>)-a)ÜTdr   Vr€#1/2(r);       (6.32) 
JTc J?C 

or, equivalently, 
/ j_ 

«0 
UJ on TA; 

and 

-{ 

C = S  /'( ^ - «^    on Tc ; 
0 on To, 

77 = V    in ^ 

0 onr0urA. 

(6.33) 

(6.34) 

(6.35) 

(These defining equations can be formally derived by differentiating (6.21)-(6.23).) 
It is easy to verify from the above equations that for each (V>,£) € X, we have 
(C>*?;0) € Z, i.e., G'(<f>,\) maps X into Z; furthermore, using trace theorems and 
Lemma 2.2 we obtain that 

UCIkr < ^Nkr + Wf'WWmrc) W\mr) +«Wo,r 

1/4     . 
< -iiöii!+c{1+in+ecww in}   ii^ii!+citfiu, 

l#)<;IWIi 

and 

HCIIoj < ||/"(*)lli-(rc> IWU«(r) ||A||L-(T) + ll/'(^)IU*cr«r> IHU«(r> +«||*lkr 
1/4 

< C {l + m + eC|Wl m}      (IHK HA«! + 110,11!} + diailx. 

Thus G'(4>, A) € C(X; Z), i.e., we have shown that (6.6) hold. 
To show the second order differentiability of G, again for clarity we will ex- 

amine only one nonlinear term appearing in the definition of G', e.g., the term 
T  »  IT   f"(<f>)i>*rdr.    We define a mapping R :  X  -► C(X;H~^2(T)) by 
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iTc 
P1   /•! 

/R(<t>,\)(rP,ü),r} = fTc f"{<f>)j>\TdT for all (<M), (^,£) € X and r e Hl'2(T). 

For each given (<f>, A) € X we have that for all (£<^, <SA) 6 X, 

([R(<j> + 64>, A + a) - Ä(^, A)]^, w), r) 

-/   /'"(<£)( W Ar JT- /   f"(</>)j(8\)TdT 
JTc JTC 

= /   [/"(^ + ^)-/"(^)-/",(^)(^)]^Ardr 
./rv 

/ [/"w + ^)-rW]Ä*A)rdr 
•/rc 

= f   f f tf""(s(l-t)(f> + st((f> + 6(f>) + (l-s)<t>)dsdt^\6<l>\2XTdr 
JrcJo Jo 

+ I    I /'"((I " W + W + ^))<*< (H)(SX)^r dT. 
JTc Jo 

Thus similar to the analysis ensuing (6.29), we can show that the operator R is 
Frechet differentiable and its derivative R'(<f>, A) is defined by: 

iJUA)-((^),(^))=/   f'"(4>)U^rdT+ f   f'Mjlrdr. 
JTc JTc 

Hence, G is second order Frechet differentiable and G"{(f>, A) is defined as follows. 

For each (*, A) 6 X, G"{4>, A)• ((0,«),($,&)) = (C,ijf,8) for ((0,w),(fe))elxl 
and (C, fj.9) EY if and only if 

<C,T>r=/   f"(<f>)$$*dT   V7r€if1/2(r), 
•/rc 

(77,0;) = 0   V^GiTo1^) 

and 

(0,r)r=/   [f"\<f>)$x/;X + f"(4>)tpZX\Tdr+ f   f"(<f>)$Qrdr    VrGl1/2(r); 
•/rc «'re 

or, equivalently, 
(0 on I\4; 

C=|  /"(rt^   onTc; (6.36) 

, 0 on To , 

77 = 0   in ft (6.37) 

and 

0 = {\f"{*)$ $ A+rwi I]+rwH a on rc; (6 38) 
0 on To U TA . 
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Furthermore, using Lemma 2.2, (6.36)-(6.38) and trace theorems, we may derive a 
bound for G"(4>,\) for each given (</», A): 

\\G"(<f>, A)||y < C {l + |n + eCml |n} (1 + «AHO 

for some constant C, so that G" is bounded on every bounded subset of X.     I 

A solution (</>, A) of the problem (5.2)-(5.3), or equivalently, of (6.27), is nonsin- 
gular if the linear system 

and 

/ a grad <j> • grad rj) dQ, + I    f'(<f>)<j>t(> dT 
Ja JTc 

+ 1 /   A>dT = (C,0)    VVGif1^) 
*o JTA 

/ <T gradÄ-gradual) + /    f"{<j))4>\udT + I   f'{<j>)\udT 
Jn JTc JTc 

- — [ ]>udQ = (rj,u)    Vu € H1^) 
€Q JQ 

(6.39) 

(6.40) 

has a unique solution (<^, X) E X for every £, 77 € if1(n)*. 
An analogous definition holds for nonsingular solutions of the discrete optimality 

system (6.2)-(6.3), or equivalently, (6.28). 
It is evident that (6.39)-(6.40) has a unique solution for large enough a, e.g., 

a > max {£, £, C||A||L4(rc) ||/"(^)||L4(rc) 

It is reasonable to assume that (6.39)-(6.40) has a unique solution generically with 
respect to a, i.e., the optimal solutions are almost always nonsingular. Thus The- 
orem 6.1 and Proposition 6.3 lead to the following: 

Theorem 6.4 Assume (<f>, A) is a nonsingular solution of the optimality system 
(5.2)-(5.3). Assume that the finite element spaces Vh satisfy the condition (6.1). 
Then, there exists a 6 > 0 and ho > 0 such that for h < ho, there exists a unique 
nonsigular solution (<f>h,\h) of the discrete optimality system (6.2)-(6.3) satisfying 
\\<f>h ~ <7>lli + ||A* - A||i < 8. Moreover, 

ll^-^lli + IIA^-AHx^O    ash-*0. (6.41) 

If, in addition, the solution of the optimality system satisfies (<f>,\) € Hm+1(Q) x 
Hm+1(Q), then there exists a constant C, independent of h, such that 

\\<f> - rti + ||A - A*|U < Chm(U\\m+1 + ||A||m+1).   I (6.42) 
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A consequence of Theorems 6.4 is the following corollary that gives error esti- 
mates for the approximation of the controls. 

Corollary 6.5 Assume (<f>, A) is a nonsingular solution of the optimality system 
(5.2)-(5.3). Assume that the finite element spaces Vh satisfy the condition (6.1). 
Define the approximate control by 

u
fe = -i-AÄ    on IV 

Then 
||«*-u||i/2,r,-0    asfc-0. (6.43) 

//, in addition, the solution of the optimality system satisfies (<£, A) € Hm+1(Q) x 
Hm+1(Q), then there exists a constant C, independent of h, such that for h < ho, 

\\uh - u\\1/2,rA < f-*m(|MU+i + IIAHm+i) - (6.44) 

Proof: Recall that u = -jkX on TA; see (5.1). Then (6.43) and (6.44) follow 
trivially from (6.41)-(6.42) and the inequalities (see [1]) 

- «*||i/2,rA = ^IIA - AÄ||1/2>rc < ^||A - AÄ||1/2,r < £||A - A*|U .   I u 

Now we wish to apply Theorem 6.2 to derive X2(rc)-error estimates for the 
approximations of u. To this end, we assume the domain ft is convex and for each 
given e € (0,1/4), we introduce spaces 

H = H^2+e(Q) x Hl'2+i{tt)       and       W = H3'2+t{ü) x H3/2+e(Q). 

Note that X C H with a compact imbedding so that (6.18) implies 

\\(T-Th)\\c{Y;H)^0    asfc^O. 

Again using finite element approximation results in [6] we have that if Q, is convex 
and T(C,77,0) € Hm+1(Q) x Hm+1(Ü), then 

||(T-r*)(C,i/,tf)||fl < Chm-<+1/2\\T((,r,,6)\\Hm+HQ)xHm+l{n). 

Proposition 6.6 For each (<f>,\) G W, the operator G'(<f>,\) : X —> Y defined by 
(6.33)-(6.35) can be extended as a linear operator of C(H;Y). Furthermore, the 
mapping w —»• G'(w) is continuous from W onto C(H;Y). 

Proof. Note that W C L°°(ü) x L°°(ft) and H^+^Q)^ C L2(T) with continuous 
imbeddings. For each ((j>, A) € W, we can easily verify from (6.33)-(6.35) that 

\\G'(<f>,\)(j,ü)\\Y 

< A(<f>) {\\ü,\\o,rA + \M\o,rc + IMIo + ll^l|o,rc} 

< CTA(<f>) {||«||1/2+e + ||^||i/2+e}   V (fe) € H, 

23 



where 

^) = Cmax{l   1,        max      (|/'(x)| + a),        max      (|/"(x)| ||A||3/2+e) j 
[flu        «O        M<ll«ll3/2+« M<|Ms/2+« J 

and CT is a constant such that ||V>||o,r < CT\\Wi/2+e for »U V € #1/2+£(ft). The 
desired results follow easily from this estimate.     I 

If (<f>, A) is a nonsingular solution of (5.2)-(5.3), using the denseness of if1 (ft) in 
Hll2+i{ü) and regularity theories for (6.39)-(6.40), we infer that (6.12) holds. 

Thus we have verified all the requirements in Theorem 6.2 so that we can draw 
the following conclusion: 

Theorem 6.7 Assume ft is convex and (<f>, A) is a nonsingular solution of the 
optimality system (5.2)-(5.3). Assume that the finite element spaces Vh satisfy the 
condition (6.1). Then, there exists a S > 0 and h0 > 0 such that for h < h0, 
there exists a unique nonsigular solution (<j>h,\h) of the discrete optimality system 
(6.2)-(6.3) satisfying \\<ßh - <j>\\i + \\Xh — A||i < 8. If, in addition, the solution of 
the optimality system satisfies (<f>, A) € Hm+1(Q.) x Hm+1(Q), then there exists a 
constant C, independent of h, such that 

U - oAIUi/2 + «A - Afe||e+1/2 < CÄ—e+1/2(||^||m+i + ||A||m+1).   I     (6.45) 

A consequence of Theorem 6.7 is the following corollary that gives the L2
(TA)- 

error estimates for the the approximation of the controls. 

Corollary 6.8 Assume Q, is convex and (<f>, A) is a nonsingular solution of the 
optimality system (5.2)-(5.3). Assume that the finite element spaces Vh satisfy the 
condition (6.1). Define the approximate control by 

uh = —^\h    on IV 

If the solution of the optimality system satisfies (<j>,\) € Hm+1(Q) x Hm+l(Q), 
then for each e € (0,1/4) there exists a constant C, independent of h, such that for 
h < ho, 

\\uh - u||0|rA < £fcm-e+1/2(|MU+i + ||A||m+1). (6.46) 
t>0 

Proof: Recall that u = -j-\ on TA', see (5.1). Then (6.46) follows trivially from 
(6.45) and the trace theorems (see [1]) 

II" " t**||o,rA = UX ~ Xh\\°?c < UX ~ AftH°.r ^ fl|A " A*M«+1/a •   ■ Oo 00 °0 
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